Derivations for moments of univariate normal distributionΒΆ

Standard NormalΒΆ

ExpectationΒΆ

X∼p(x)∼N(0,1)=12Ο€e(βˆ’1/2)x2EX[x]=βˆ«βˆ’βˆžβˆž12Ο€e(βˆ’1/2)x2β‹…xdx

Solve indefinite integral, $I=∫12Ο€eβˆ’x2/2β‹…xdxy=βˆ’x22β‡’dy=βˆ’xdx∴I=βˆ«βˆ’12Ο€eydy=βˆ’12Ο€βˆ«eydy=βˆ’12Ο€eySubstitutebackI=βˆ’12Ο€eβˆ’x2/2Definiteintegralis\left.\frac{-1}{\sqrt{2 \pi}} e^{-x^{2}}\right|_{-\infty} ^{\infty}=\frac{-1}{\sqrt{2 \pi}}\left(e^{-\infty}-e^{-\infty}\right)=0$

VarianceΒΆ